Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Magnetism and Superconductivity in $\mathbf{R}\mathbf{u}_{1-x}\mathbf{Sr}_2\mathbf{G}\mathbf{dC}\mathbf{u}_{2+x}\mathbf{O}_{8-d}$ Compounds* P.W. Klamut¹, B. Dabrowski¹, S. Mini¹, M. Maxwell¹, J. Mais¹, Cz. Sulkowski², M. Matusiak², D. Wlosewicz², A. Schengelaya³, R. Khasanov³, I. Savic³, H. Keller³ - ¹ Northern Illinois University, DeKalb, IL 60115, USA - ² Institute of Low Temperature and Structure Research P.A.S., Wroclaw, Poland - ³ Physik Institut der Universitat Zurich, Switzerland The properties of the newly discovered series of $Ru_{1-x}Sr_2GdCu_{2+x}O_{8-d}$ superconductors (maximum T_c =72 K for x=0.4) are reviewed with emphasis on their magnetic properties. The weak ferromagnetism of superconducting, parent $RuSr_2GdCu_2O_8$ (T_c =45 K, T_N =131 K), traced trough ac susceptibilty, magnetization and zero-field muon-spin rotation (μ SR) experiments, is always enhanced when compared to its non-superconducting counterpart (T_N =136 K). For the whole series, the low temperature magnetization shows a significant contribution of the paramagnetic system of Gd ions. The μ SR measurements reveal the presence of magnetic transitions with T_M between 2 K and 13 K for 0.4<x<0.1 compositions that can be assigned to the response of the Ru/Cu sublattice. The Hall effect, thermopower and XANES data show an increase in carrier density and Cu valence with x. The effect of changing oxygen concentration, while not observed for x=0, lead to a change of T_c from 0 to 72 K for x=0.4. ^{*}This work was supported by the ARPA/ONR and by the State of Illinois under HECA